
Our Software Dependency Problem

Russ Cox
January 23, 2019

research.swtch.com/deps

For decades, discussion of software reuse was far more common than actual
software reuse. Today, the situation is reversed: developers reuse software writ-
ten by others every day, in the form of software dependencies, and the situation
goes mostly unexamined.

My own background includes a decade of working with Google’s internal
source code system, which treats software dependencies as a first-class con-
cept,¹ and also developing support for dependencies in the Go programming
language.²

Software dependencies carry with them serious risks that are too often over-
looked. The shift to easy, fine-grained software reuse has happened so quick-
ly that we do not yet understand the best practices for choosing and using de-
pendencies effectively, or even for deciding when they are appropriate and when
not. My purpose in writing this article is to raise awareness of the risks and en-
courage more investigation of solutions.

What is a dependency?

In today’s software development world, a dependency is additional code that you
want to call from your program. Adding a dependency avoids repeating work
already done: designing, writing, testing, debugging, and maintaining a specific
unit of code. In this article we’ll call that unit of code a package; some systems
use terms like library or module instead of package.

Taking on externally-written dependencies is an old practice: most program-
mers have at one point in their careers had to go through the steps of manual-
ly downloading and installing a required library, like C’s PCRE or zlib, or C++’s
Boost or Qt, or Java’s JodaTime or JUnit. These packages contain high-quality,
debugged code that required significant expertise to develop. For a program that
needs the functionality provided by one of these packages, the tedious work of
manually downloading, installing, and updating the package is easier than the
work of redeveloping that functionality from scratch. But the high fixed costs of
reuse mean that manually-reused packages tend to be big: a tiny package would
be easier to reimplement.

A dependency manager (sometimes called a package manager) automates the
downloading and installation of dependency packages. As dependency man-
agers make individual packages easier to download and install, the lower fixed
costs make smaller packages economical to publish and reuse.

For example, the Node.js dependency manager NPM provides access to over
750,000 packages. One of them, escape-string-regexp, provides a single
function that escapes regular expression operators in its input. The entire im-
plementation is:

var matchOperatorsRe = /[|\\{}()[\]^$+*?.]/g;

module.exports = function (str) {

if (typeof str !== ’string’) {

throw new TypeError(’Expected a string’);

}

return str.replace(matchOperatorsRe, ’\\$&’);

};

http://research.swtch.com/deps

O S D P

Before dependency managers, publishing an eight-line code library would have
been unthinkable: too much overhead for too little benefit. But NPM has driv-
en the overhead approximately to zero, with the result that nearly-trivial func-
tionality can be packaged and reused. In late January 2019, the escape-string-

regexp package is explicitly depended upon by almost a thousand other NPM
packages, not to mention all the packages developers write for their own use and
don’t share.

Dependency managers now exist for essentially every programming language.
Maven Central (Java), Nuget (.NET), Packagist (PHP), PyPI (Python), and
RubyGems (Ruby) each host over 100,000 packages. The arrival of this kind of
fine-grained, widespread software reuse is one of the most consequential shifts
in software development over the past two decades. And if we’re not more care-
ful, it will lead to serious problems.

What could go wrong?

A package, for this discussion, is code you download from the internet.
Adding a package as a dependency outsources the work of developing that
code—designing, writing, testing, debugging, and maintaining—to someone else
on the internet, someone you often don’t know. By using that code, you are
exposing your own program to all the failures and flaws in the dependency.
Your program’s execution now literally depends on code downloaded from this
stranger on the internet. Presented this way, it sounds incredibly unsafe. Why
would anyone do this?

We do this because it’s easy, because it seems to work, because everyone else
is doing it too, and, most importantly, because it seems like a natural continua-
tion of age-old established practice. But there are important differences we’re ig-
noring.

Decades ago, most developers already trusted others to write software they
depended on, such as operating systems and compilers. That software was
bought from known sources, often with some kind of support agreement. There
was still a potential for bugs or outright mischief,³ but at least we knew who we
were dealing with and usually had commercial or legal recourses available.

The phenomenon of open-source software, distributed at no cost over the
internet, has displaced many of those earlier software purchases. When reuse
was difficult, there were fewer projects publishing reusable code packages. Even
though their licenses typically disclaimed, among other things, any “implied
warranties of merchantability and fitness for a particular purpose,” the projects
built up well-known reputations that often factored heavily into people’s deci-
sions about which to use. The commercial and legal support for trusting our
software sources was replaced by reputational support. Many common early
packages still enjoy good reputations: consider BLAS (published 1979), Netlib
(1987), libjpeg (1991), LAPACK (1992), HP STL (1994), and zlib (1995).

Dependency managers have scaled this open-source code reuse model down:
now, developers can share code at the granularity of individual functions of tens
of lines. This is a major technical accomplishment. There are myriad available
packages, and writing code can involve such a large number of them, but the
commercial, legal, and reputational support mechanisms for trusting the code
have not carried over. We are trusting more code with less justification for do-
ing so.

The cost of adopting a bad dependency can be viewed as the sum, over all
possible bad outcomes, of the cost of each bad outcome multiplied by its prob-
ability of happening (risk).

O S D P

expected cost = Σ
b ∈ bad outcomes

cost(b) × probability(b)

The context where a dependency will be used determines the cost of a bad out-
come. At one end of the spectrum is a personal hobby project, where the cost of
most bad outcomes is near zero: you’re just having fun, bugs have no real im-
pact other than wasting some time, and even debugging them can be fun. So the
risk probability almost doesn’t matter: it’s being multiplied by zero. At the other
end of the spectrum is production software that must be maintained for years.
Here, the cost of a bug in a dependency can be very high: servers may go down,
sensitive data may be divulged, customers may be harmed, companies may fail.
High failure costs make it much more important to estimate and then reduce
any risk of a serious failure.

No matter what the expected cost, experiences with larger dependencies sug-
gest some approaches for estimating and reducing the risks of adding a software
dependency. It is likely that better tooling is needed to help reduce the costs of
these approaches, much as dependency managers have focused to date on re-
ducing the costs of download and installation.

Inspect the dependency

You would not hire a software developer you’ve never heard of and know noth-
ing about. You would learn more about them first: check references, conduct a
job interview, run background checks, and so on. Before you depend on a pack-
age you found on the internet, it is similarly prudent to learn a bit about it first.

A basic inspection can give you a sense of how likely you are to run into
problems trying to use this code. If the inspection reveals likely minor problems,
you can take steps to prepare for or maybe avoid them. If the inspection reveals
major problems, it may be best not to use the package: maybe you’ll find a more
suitable one, or maybe you need to develop one yourself. Remember that open-
source packages are published by their authors in the hope that they will be use-
ful but with no guarantee of usability or support. In the middle of a production
outage, you’ll be the one debugging it. As the original GNU General Public Li-
cense warned, “The entire risk as to the quality and performance of the program
is with you. Should the program prove defective, you assume the cost of all nec-
essary servicing, repair or correction.”⁴

The rest of this section outlines some considerations when inspecting a pack-
age and deciding whether to depend on it.

Design

Is package’s documentation clear? Does the API have a clear design? If the au-
thors can explain the package’s API and its design well to you, the user, in the
documentation, that increases the likelihood they have explained the implemen-
tation well to the computer, in the source code. Writing code for a clear, well-
designed API is also easier, faster, and hopefully less error-prone. Have the au-
thors documented what they expect from client code in order to make future
upgrades compatible? (Examples include the C++⁵ and Go⁶ compatibility doc-
uments.)

Code Quality

Is the code well-written? Read some of it. Does it look like the authors have
been careful, conscientious, and consistent? Does it look like code you’d want to
debug? You may need to.

O S D P

Develop your own systematic ways to check code quality. For example, some-
thing as simple as compiling a C or C++ program with important compiler
warnings enabled (for example, -Wall) can give you a sense of how seriously
the developers work to avoid various undefined behaviors. Recent languages like
Go, Rust, and Swift use an unsafe keyword to mark code that violates the type
system; look to see how much unsafe code there is. More advanced semantic
tools like Infer⁷ or SpotBugs⁸ are helpful too. Linters are less helpful: you should
ignore rote suggestions about topics like brace style and focus instead on seman-
tic problems.

Keep an open mind to development practices you may not be familiar with.
For example, the SQLite library ships as a single 200,000-line C source file and
a single 11,000-line header, the “amalgamation.” The sheer size of these files
should raise an initial red flag, but closer investigation would turn up the actu-
al development source code, a traditional file tree with over a hundred C source
files, tests, and support scripts. It turns out that the single-file distribution is built
automatically from the original sources and is easier for end users, especially
those without dependency managers. (The compiled code also runs faster, be-
cause the compiler can see more optimization opportunities.)

Testing

Does the code have tests? Can you run them? Do they pass? Tests establish that
the code’s basic functionality is correct, and they signal that the developer is se-
rious about keeping it correct. For example, the SQLite development tree has an
incredibly thorough test suite with over 30,000 individual test cases as well as
developer documentation explaining the testing strategy.⁹ On the other hand, if
there are few tests or no tests, or if the tests fail, that’s a serious red flag: future
changes to the package are likely to introduce regressions that could easily have
been caught. If you insist on tests in code you write yourself (you do, right?),
you should insist on tests in code you outsource to others.

Assuming the tests exist, run, and pass, you can gather more information by
running them with run-time instrumentation like code coverage analysis, race
detection,¹⁰ memory allocation checking, and memory leak detection.

Debugging

Find the package’s issue tracker. Are there many open bug reports? How long
have they been open? Are there many fixed bugs? Have any bugs been fixed re-
cently? If you see lots of open issues about what look like real bugs, especial-
ly if they have been open for a long time, that’s not a good sign. On the other
hand, if the closed issues show that bugs are rarely found and promptly fixed,
that’s great.

Maintenance

Look at the package’s commit history. How long has the code been active-
ly maintained? Is it actively maintained now? Packages that have been actively
maintained for an extended amount of time are more likely to continue to be
maintained. How many people work on the package? Many packages are per-
sonal projects that developers create and share for fun in their spare time. Oth-
ers are the result of thousands of hours of work by a group of paid developers.
In general, the latter kind of package is more likely to have prompt bug fixes,
steady improvements, and general upkeep.

On the other hand, some code really is “done.” For example, NPM’s escape-

string-regexp, shown earlier, may never need to be modified again.

O S D P

Usage

Do many other packages depend on this code? Dependency managers can often
provide statistics about usage, or you can use a web search to estimate how of-
ten others write about using the package. More users should at least mean more
people for whom the code works well enough, along with faster detection of
new bugs. Widespread usage is also a hedge against the question of continued
maintenance: if a widely-used package loses its maintainer, an interested user is
likely to step forward.

For example, libraries like PCRE or Boost or JUnit are incredibly widely used.
That makes it more likely—although certainly not guaranteed—that bugs you
might otherwise run into have already been fixed, because others ran into them
first.

Security

Will you be processing untrusted inputs with the package? If so, does it seem to
be robust against malicious inputs? Does it have a history of security problems
listed in the National Vulnerability Database (NVD)?¹¹

For example, when Jeff Dean and I started work on Google Code
Search¹²—grep over public source code—in 2006, the popular PCRE regular
expression library seemed like an obvious choice. In an early discussion with
Google’s security team, however, we learned that PCRE had a history of prob-
lems like buffer overflows, especially in its parser. We could have learned the
same by searching for PCRE in the NVD. That discovery didn’t immediately
cause us to abandon PCRE, but it did make us think more carefully about test-
ing and isolation.

Licensing

Is the code properly licensed? Does it have a license at all? Is the license accept-
able for your project or company? A surprising fraction of projects on GitHub
have no clear license. Your project or company may impose further restrictions
on the allowed licenses of dependencies. For example, Google disallows the use
of code licensed under AGPL-like licenses (too onerous) as well as WTFPL-like
licenses (too vague).¹³

Dependencies

Does the code have dependencies of its own? Flaws in indirect dependencies
are just as bad for your program as flaws in direct dependencies. Dependency
managers can list all the transitive dependencies of a given package, and each
of them should ideally be inspected as described in this section. A package with
many dependencies incurs additional inspection work, because those same de-
pendencies incur additional risk that needs to be evaluated.

Many developers have never looked at the full list of transitive dependencies
of their code and don’t know what they depend on. For example, in March 2016
the NPM user community discovered that many popular projects—including
Babel, Ember, and React—all depended indirectly on a tiny package called
left-pad, consisting of a single 8-line function body. They discovered this
when the author of left-pad deleted that package from NPM, inadvertent-
ly breaking most Node.js users’ builds.¹⁴ And left-pad is hardly exceptional
in this regard. For example, 30% of the 750,000 packages published on NPM
depend—at least indirectly—on escape-string-regexp. Adapting Leslie Lam-
port’s observation about distributed systems, a dependency manager can easily
create a situation in which the failure of a package you didn’t even know exist-
ed can render your own code unusable.

O S D P

Test the dependency

The inspection process should include running a package’s own tests. If the
package passes the inspection and you decide to make your project depend on
it, the next step should be to write new tests focused on the functionality need-
ed by your application. These tests often start out as short standalone programs
written to make sure you can understand the package’s API and that it does
what you think it does. (If you can’t or it doesn’t, turn back now!) It is worth
then taking the extra effort to turn those programs into automated tests that can
be run against newer versions of the package. If you find a bug and have a po-
tential fix, you’ll want to be able to rerun these project-specific tests easily, to
make sure that the fix did not break anything else.

It is especially worth exercising the likely problem areas identified by the basic
inspection. For Code Search, we knew from past experience that PCRE some-
times took a long time to execute certain regular expression searches. Our ini-
tial plan was to have separate thread pools for “simple” and “complicated” reg-
ular expression searches. One of the first tests we ran was a benchmark, com-
paring pcregrep with a few other grep implementations. When we found that,
for one basic test case, pcregrep was 70X slower than the fastest grep available,
we started to rethink our plan to use PCRE. Even though we eventually dropped
PCRE entirely, that benchmark remains in our code base today.

Abstract the dependency

Depending on a package is a decision that you are likely to revisit later. Perhaps
updates will take the package in a new direction. Perhaps serious security prob-
lems will be found. Perhaps a better option will come along. For all these rea-
sons, it is worth the effort to make it easy to migrate your project to a new de-
pendency.

If the package will be used from many places in your project’s source code,
migrating to a new dependency would require making changes to all those
different source locations. Worse, if the package will be exposed in your own
project’s API, migrating to a new dependency would require making changes in
all the code calling your API, which you might not control. To avoid these costs,
it makes sense to define an interface of your own, along with a thin wrapper im-
plementing that interface using the dependency. Note that the wrapper should
include only what your project needs from the dependency, not everything the
dependency offers. Ideally, that allows you to substitute a different, equally ap-
propriate dependency later, by changing only the wrapper. Migrating your per-
project tests to use the new interface tests the interface and wrapper implemen-
tation and also makes it easy to test any potential replacements for the depen-
dency.

For Code Search, we developed an abstract Regexp class that defined the in-
terface Code Search needed from any regular expression engine. Then we wrote
a thin wrapper around PCRE implementing that interface. The indirection made
it easy to test alternate libraries, and it kept us from accidentally introducing
knowledge of PCRE internals into the rest of the source tree. That in turn en-
sured that it would be easy to switch to a different dependency if needed.

Isolate the dependency

It may also be appropriate to isolate a dependency at run-time, to limit the pos-
sible damage caused by bugs in it. For example, Google Chrome allows users to
add dependencies—extension code—to the browser. When Chrome launched in
2008, it introduced the critical feature (now standard in all browsers) of isolating
each extension in a sandbox running in a separate operating-system process.¹⁵

O S D P

An exploitable bug in an badly-written extension therefore did not automatical-
ly have access to the entire memory of the browser itself and could be stopped
from making inappropriate system calls.¹⁶ For Code Search, until we dropped
PCRE entirely, our plan was to isolate at least the PCRE parser in a similar sand-
box. Today, another option would be a lightweight hypervisor-based sandbox
like gVisor.¹⁷ Isolating dependencies reduces the associated risks of running that
code.

Even with these examples and other off-the-shelf options, run-time isolation
of suspect code is still too difficult and rarely done. True isolation would require
a completely memory-safe language, with no escape hatch into untyped code.
That’s challenging not just in entirely unsafe languages like C and C++ but also
in languages that provide restricted unsafe operations, like Java when includ-
ing JNI, or like Go, Rust, and Swift when including their “unsafe” features. Even
in a memory-safe language like JavaScript, code often has access to far more
than it needs. In November 2018, the latest version of the NPM package event-

stream, which provided a functional streaming API for JavaScript events, was
discovered to contain obfuscated malicious code that had been added two and a
half months earlier. The code, which harvested large Bitcoin wallets from users
of the Copay mobile app, was accessing system resources entirely unrelated to
processing event streams.¹⁸ One of many possible defenses to this kind of prob-
lem would be to better restrict what dependencies can access.

Avoid the dependency

If a dependency seems too risky and you can’t find a way to isolate it, the best
answer may be to avoid it entirely, or at least to avoid the parts you’ve identi-
fied as most problematic.

For example, as we better understood the risks and costs associated with
PCRE, our plan for Google Code Search evolved from “use PCRE directly,” to
“use PCRE but sandbox the parser,” to “write a new regular expression parser but
keep the PCRE execution engine,” to “write a new parser and connect it to a dif-
ferent, more efficient open-source execution engine.” Later we rewrote the exe-
cution engine as well, so that no dependencies were left, and we open-sourced
the result: RE2.¹⁹

If you only need a tiny fraction of a dependency, it may be simplest to make
a copy of what you need (preserving appropriate copyright and other legal no-
tices, of course). You are taking on responsibility for fixing bugs, maintenance,
and so on, but you’re also completely isolated from the larger risks. The Go de-
veloper community has a proverb about this: “A little copying is better than a lit-
tle dependency.”²⁰

Upgrade the dependency

For a long time, the conventional wisdom about software was “if it ain’t broke,
don’t fix it.” Upgrading carries a chance of introducing new bugs; without a cor-
responding reward—like a new feature you need—why take the risk? This anal-
ysis ignores two costs. The first is the cost of the eventual upgrade. In software,
the difficulty of making code changes does not scale linearly: making ten small
changes is less work and easier to get right than making one equivalent large
change. The second is the cost of discovering already-fixed bugs the hard way.
Especially in a security context, where known bugs are actively exploited, every
day you wait is another day that attackers can break in.

For example, consider the year 2017 at Equifax, as recounted by executives in
detailed congressional testimony.²¹ On March 7, a new vulnerability in Apache
Struts was disclosed, and a patched version was released. On March 8, Equifax
received a notice from US-CERT about the need to update any uses of Apache

O S D P

Struts. Equifax ran source code and network scans on March 9 and March 15,
respectively; neither scan turned up a particular group of public-facing web
servers. On May 13, attackers found the servers that Equifax’s security teams
could not. They used the Apache Struts vulnerability to breach Equifax’s net-
work and then steal detailed personal and financial information about 148 mil-
lion people over the next two months. Equifax finally noticed the breach on July
29 and publicly disclosed it on September 4. By the end of September, Equifax’s
CEO, CIO, and CSO had all resigned, and a congressional investigation was un-
derway.

Equifax’s experience drives home the point that although dependency man-
agers know the versions they are using at build time, you need other arrange-
ments to track that information through your production deployment process.
For the Go language, we are experimenting with automatically including a ver-
sion manifest in every binary, so that deployment processes can scan binaries for
dependencies that need upgrading. Go also makes that information available at
run-time, so that servers can consult databases of known bugs and self-report
to monitoring software when they are in need of upgrades.

Upgrading promptly is important, but upgrading means adding new code to
your project, which should mean updating your evaluation of the risks of using
the dependency based on the new version. As minimum, you’d want to skim the
diffs showing the changes being made from the current version to the upgrad-
ed versions, or at least read the release notes, to identify the most likely areas of
concern in the upgraded code. If a lot of code is changing, so that the diffs are
difficult to digest, that is also information you can incorporate into your risk as-
sessment update.

You’ll also want to re-run the tests you’ve written that are specific to your
project, to make sure the upgraded package is at least as suitable for the project
as the earlier version. It also makes sense to re-run the package’s own tests. If the
package has its own dependencies, it is entirely possible that your project’s con-
figuration uses different versions of those dependencies (either older or newer
ones) than the package’s authors use. Running the package’s own tests can quick-
ly identify problems specific to your configuration.

Again, upgrades should not be completely automatic. You need to verify that
the upgraded versions are appropriate for your environment before deploying
them.²²

If your upgrade process includes re-running the integration and qualification
tests you’ve already written for the dependency, so that you are likely to identi-
fy new problems before they reach production, then, in most cases, delaying an
upgrade is riskier than upgrading quickly.

The window for security-critical upgrades is especially short. In the after-
math of the Equifax breach, forensic security teams found evidence that attack-
ers (perhaps different ones) had successfully exploited the Apache Struts vulner-
ability on the affected servers on March 10, only three days after it was publicly
disclosed, but they’d only run a single whoami command.

Watch your dependencies

Even after all that work, you’re not done tending your dependencies. It’s impor-
tant to continue to monitor them and perhaps even re-evaluate your decision to
use them.

First, make sure that you keep using the specific package versions you think
you are. Most dependency managers now make it easy or even automatic to
record the cryptographic hash of the expected source code for a given package
version and then to check that hash when re-downloading the package on an-
other computer or in a test environment. This ensures that your build use the

O S D P

same dependency source code you inspected and tested. These kinds of checks
prevented the event-stream attacker, described earlier, from silently inserting
malicious code in the already-released version 3.3.5. Instead, the attacker had
to create a new version, 3.3.6, and wait for people to upgrade (without looking
closely at the changes).

It is also important to watch for new indirect dependencies creeping in:
upgrades can easily introduce new packages upon which the success of your
project now depends. They deserve your attention as well. In the case of event-
stream, the malicious code was hidden in a different package, flatmap-stream,
which the new event-stream release added as a new dependency.

Creeping dependencies can also affect the size of your project. During the de-
velopment of Google’s Sawzall²³—a JIT’ed logs processing language—the authors
discovered at various times that the main interpreter binary contained not just
Sawzall’s JIT but also (unused) PostScript, Python, and JavaScript interpreters.
Each time, the culprit turned out to be unused dependencies declared by some
library Sawzall did depend on, combined with the fact that Google’s build sys-
tem eliminated any manual effort needed to start using a new dependency.. This
kind of error is the reason that the Go language makes importing an unused
package a compile-time error.

Upgrading is a natural time to revisit the decision to use a dependency that’s
changing. It’s also important to periodically revisit any dependency that isn’t
changing. Does it seem plausible that there are no security problems or other
bugs to fix? Has the project been abandoned? Maybe it’s time to start planning
to replace that dependency.

It’s also important to recheck the security history of each dependency. For ex-
ample, Apache Struts disclosed different major remote code execution vulnera-
bilities in 2016, 2017, and 2018. Even if you have a list of all the servers that run
it and update them promptly, that track record might make you rethink using it
at all.

Conclusion

Software reuse is finally here, and I don’t mean to understate its benefits: it has
brought an enormously positive transformation for software developers. Even
so, we’ve accepted this transformation without completely thinking through the
potential consequences. The old reasons for trusting dependencies are becom-
ing less valid at exactly the same time we have more dependencies than ever.

The kind of critical examination of specific dependencies that I outlined in
this article is a significant amount of work and remains the exception rather
than the rule. But I doubt there are any developers who actually make the effort
to do this for every possible new dependency. I have only done a subset of them
for a subset of my own dependencies. Most of the time the entirety of the de-
cision is “let’s see what happens.” Too often, anything more than that seems like
too much effort.

But the Copay and Equifax attacks are clear warnings of real problems in the
way we consume software dependencies today. We should not ignore the warn-
ings. I offer three broad recommendations.

1. Recognize the problem. If nothing else, I hope this article has con-
vinced you that there is a problem here worth addressing. We need
many people to focus significant effort on solving it.

2. Establish best practices for today. We need to establish best practices
for managing dependencies using what’s available today. This means
working out processes that evaluate, reduce, and track risk, from the
original adoption decision through to production use. In fact, just as

O S D P

some engineers specialize in testing, it may be that we need engineers
who specialize in managing dependencies.

3. Develop better dependency technology for tomorrow. Dependency man-
agers have essentially eliminated the cost of downloading and in-
stalling a dependency. Future development effort should focus on re-
ducing the cost of the kind of evaluation and maintenance neces-
sary to use a dependency. For example, package discovery sites might
work to find more ways to allow developers to share their findings.
Build tools should, at the least, make it easy to run a package’s own
tests. More aggressively, build tools and package management systems
could also work together to allow package authors to test new changes
against all public clients of their APIs. Languages should also provide
easy ways to isolate a suspect package.

There’s a lot of good software out there. Let’s work together to find out how to
reuse it safely.

O S D P

References

1. Rachel Potvin and Josh Levenberg, “Why Google Stores Billions of Lines of
Code in a Single Repository,” Communications of the ACM 59(7) (July
2016), pp. 78-87. https://doi.org/10.1145/2854146

2. Russ Cox, “Go & Versioning,” February 2018. https://research.swtch.com/vgo

3. Ken Thompson, “Reflections on Trusting Trust,” Communications of the
ACM 27(8) (August 1984), pp. 761–763.
https://doi.org/10.1145/358198.358210

4. GNU Project, “GNU General Public License, version 1,” February 1989.
https://www.gnu.org/licenses/old-licenses/gpl-1.0.html

5. Titus Winters, “SD-8: Standard Library Compatibility,” C++ Standing Docu-
ment, August 2018. https://isocpp.org/std/standing-documents/sd-8-stan-
dard-library-compatibility

6. Go Project, “Go 1 and the Future of Go Programs,” September 2013.
https://golang.org/doc/go1compat

7. Facebook, “Infer: A tool to detect bugs in Java and C/C++/Objective-C code
before it ships.” https://fbinfer.com/

8. “SpotBugs: Find bugs in Java Programs.” https://spotbugs.github.io/

9. D. Richard Hipp, “How SQLite is Tested.” https://www.sqlite.org/testing.html

10. Alexander Potapenko, “Testing Chromium: ThreadSanitizer v2, a next-gen
data race detector,” April 2014. https://blog.chromium.org/2014/04/testing-
chromium-threadsanitizer-v2.html

11. NIST, “National Vulnerability Database – Search and Statistics.”
https://nvd.nist.gov/vuln/search

12. Russ Cox, “Regular Expression Matching with a Trigram Index, or How
Google Code Search Worked,” January 2012.
https://swtch.com/~rsc/regexp/regexp4.html

13. Google, “Google Open Source: Using Third-Party Licenses.”
https://opensource.google.com/docs/thirdparty/licenses/#banned

14. Nathan Willis, “A single Node of failure,” LWN, March 2016.
https://lwn.net/Articles/681410/

15. Charlie Reis, “Multi-process Architecture,” September 2008.
https://blog.chromium.org/2008/09/multi-process-architecture.html

16. Adam Langley, “Chromium’s seccomp Sandbox,” August 2009.
https://www.imperialviolet.org/2009/08/26/seccomp.html

17. Nicolas Lacasse, “Open-sourcing gVisor, a sandboxed container runtime,”
May 2018. https://cloud.google.com/blog/products/gcp/open-sourcing-gvi-
sor-a-sandboxed-container-runtime

18. Adam Baldwin, “Details about the event-stream incident,” November 2018.
https://blog.npmjs.org/post/180565383195/details-about-the-event-stream-in-
cident

19. Russ Cox, “RE2: a principled approach to regular expression matching,”
March 2010. https://opensource.googleblog.com/2010/03/re2-principled-ap-
proach-to-regular.html

20. Rob Pike, “Go Proverbs,” November 2015. https://go-proverbs.github.io/

21. U.S. House of Representatives Committee on Oversight and Government
Reform, “The Equifax Data Breach,” Majority Staff Report, 115th Congress,
December 2018. https://republicans-oversight.house.gov/wp-con-
tent/uploads/2018/12/Equifax-Report.pdf

http://doi.org/10.1145/2854146
http://research.swtch.com/vgo
http://doi.org/10.1145/358198.358210
http://www.gnu.org/licenses/old-licenses/gpl-1.0.html
http://isocpp.org/std/standing-documents/sd-8-standard-library-compatibility
http://golang.org/doc/go1compat
http://fbinfer.com/
http://spotbugs.github.io/
http://www.sqlite.org/testing.html
http://blog.chromium.org/2014/04/testing-chromium-threadsanitizer-v2.html
http://nvd.nist.gov/vuln/search
http://swtch.com/~rsc/regexp/regexp4.html
http://opensource.google.com/docs/thirdparty/licenses/#banned
http://lwn.net/Articles/681410/
http://blog.chromium.org/2008/09/multi-process-architecture.html
http://www.imperialviolet.org/2009/08/26/seccomp.html
http://cloud.google.com/blog/products/gcp/open-sourcing-gvisor-a-sandboxed-container-runtime
http://blog.npmjs.org/post/180565383195/details-about-the-event-stream-incident
http://opensource.googleblog.com/2010/03/re2-principled-approach-to-regular.html
http://go-proverbs.github.io/
http://republicans-oversight.house.gov/wp-content/uploads/2018/12/Equifax-Report.pdf

O S D P

22. Russ Cox, “The Principles of Versioning in Go,” GopherCon Singapore, May
2018. https://www.youtube.com/watch?v=F8nrpe0XWRg

23. Rob Pike, Sean Dorward, Robert Griesemer, and Sean Quinlan, “Interpret-
ing the Data: Parallel Analysis with Sawzall,” Scientific Programming Journal,
vol. 13 (2005). https://doi.org/10.1155/2005/962135

Coda

A version of this post was published in ACM Queue (March-April 2019) and
then Communications of the ACM (August 2019) under the title “Surviving
Software Dependencies.”

http://www.youtube.com/watch?v=F8nrpe0XWRg
http://doi.org/10.1155/2005/962135
http://queue.acm.org/detail.cfm?id=3344149
http://dl.acm.org/doi/pdf/10.1145/3347446

